The Measurement of Statistical Evidence Lecture 4 - part 2

Michael Evans University of Toronto http://www.utstat.utoronto.ca/mikevans/sta4522/STA4522.html

2021

Michael Evans University of Toronto http://jThe Measurement of Statistical Evidence Lec

Statistical Reasoning

- the goal is a theory of statistical reasoning that addresses the issues raised and is based on a proper characterization of statistical evidence

- here is a sequence of steps to statistical reasoning concerning ${\bf E}$ and/or ${\bf H}$
 - choose a model $\{f_{\theta}: \theta \in \Theta\}$
 - 2 choose a prior π
 - Image measure bias and select the amount of data to collect to avoid bias
 - collect the data
 - O check the model (modify if necessary)
 - O check the prior (modify if necessary)
 - Ø derive the inferences (based on principles of inference to be discussed)
- 7 and 3 are now discussed and based on the ingredients

 $({f_{\theta}: \theta \in \Theta}, \pi, x)$

- these ingredients lead to a probability model $(heta, x) \sim \pi(heta) f_{ heta}(x)$

- so all discussion of the principles of inference can take place within the context of a probability model (Ω, \mathcal{F}, P)

- the first principle of inference

1. Principle of Conditional Probability: initial belief that the unknown value of $\omega \in A \in \mathcal{F}$ is measured by P(A) and after observing that $\omega \in C$ (via a known information generator), where P(C) > 0, then belief that $\omega \in A$ is measured by $P(A | C) = P(A \cap C)/P(C)$.

- second principle of inference

2. **Principle of Evidence**: if P(A | C) > P(A), then the observation that C is true is evidence in favor of A being true, if P(A | C) < P(A), then the observation that C is true is evidence against A being true, and P(A | C) = P(A) is neither evidence in favor nor evidence against A being true.

- note - $P(A \mid C) = P(A)$ iff A and C are statistically independent

- so the principle of evidence tells us when there is evidence in favor or evidence against only and sometimes more is needed as it will be necessary to order alternatives

- third principle of inference

3. Principle of the Relative Belief Ratio: when a numerical measure of evidence is required this is given by the relative belief ratio $RB(A|C) = \frac{P(A|C)}{P(A)}$.

- > 1 evidence in favor
- so RB(A|C) < 1 evidence against
 - = 1 no evidence either way

- principles 1 and 2 seem simple and sound whereas 3 is more controversial as there are other measures of evidence that are valid measures of evidence, namely, there is a clear cut-off that determines evidence in favor or against according to the principle of evidence

- is the principle of evidence sound?

Example Card game.

- two players in a card game, labeled I and II

- each is dealt m cards, where $2 \leq m \leq$ 26, from a randomly shuffled deck of 52 playing cards

- player I, after seeing their hand, is concerned with the truth or falsity of H_0 : player II has exactly two aces

- the hand of player I will contain evidence concerning this

- what is the evidence when C_k = "the number of aces in the hand of player I is k" with k = 0, 1 or 2?

- two questions

(i) is there evidence in favor of or against H₀?(ii) how strong is this evidence?

- we have $P(H_0)$ and $P(H_0 | C_k)$ available for this

	$P(H_0)$	$P(H_0)$	(C_k)	$RB(H_0 \mid C_k)$						
		<i>k</i> = 0	0.0049	1.0824						
<i>m</i> = 2	0.0045	k = 1	0.0024	0.5412						
		<i>k</i> = 2	0.0008	0.1804						
		<i>k</i> = 0	0.0483	1.2089						
m = 5	0.0399	k = 1	0.0259	0.6487						
		k = 2	0.0093	0.2317						
		<i>k</i> = 0	0.1994	1.3934						
m = 10	0.1431	k = 1	0.1254	0.8765						
		<i>k</i> = 2	0.0522	0.3652						
		<i>k</i> = 0	0.3487	1.0018						
<i>m</i> = 20	0.3481	k = 1	0.4597	1.3205						
		<i>k</i> = 2	0.3831	1.1004						
		<i>k</i> = 0	0.0171	0.0439						
<i>m</i> = 25	0.3890	k = 1	0.2051	0.5274						
		<i>k</i> = 2	0.8547	2.1974						
		<i>k</i> = 0	0.0000	0.0000						
<i>m</i> = 26	0.3902	k = 1	0.0000	0.0000						
		<i>k</i> = 2	1.0000 <	2.5630	j0ji ≜		7	Ş	5	5

Michael Evans University of Toronto http://iThe Measurement of Statistical Evidence Lec

- other than (m, k) = (25, 2), (26, 2), the conditional probability $P(H_0 \mid C_k)$ does not support H_0 being true and in many cases some would argue that the value of this probability indicates evidence against H_0

- also conditional probabilities do not satisfy the principle of evidence and so are not valid measures of evidence

- comparing $RB(H_0 | C_k)$ to 1 answers 1 and quoting $P(H_0 | C_k)$ answers (ii) as it measures how strongly we believe the evidence

Example 2. Prosecutor's fallacy.

- a uniform probability distribution on a population of size N of which some member has committed a crime

- DNA evidence has been left at the crime scene and suppose this trait is shared by $m \ll N$ of the population

- a particular member possesses the trait and the prosecutor concludes they are guilty because the trait is rare

- P("has trait" | "guilty") = 1 is misinterpreted as the probability of guilt rather than P("guilty" | "has trait") = 1/m which is small if m is large - **but** clearly there is evidence of guilt and probability does not indicate this (MAP suggests innocence) and

$$RB($$
 "guilty" | "has trait") = $N/m > 1$
 $P($ "guilty" | "has trait") = $1/m$

- so there is evidence of guilt but the evidence is weak whenever m is large and a conviction does not then seem appropriate

- but suppose that "guilty" corresponds to being a carrier of a highly infectious deadly disease and "has trait" corresponds to some positive, but not definitive, test for this

- the same numbers should undoubtedly lead to a quarantine

- there is a difference between a decision and what the evidence says

- the Principle of Evidence has a long history but not in the statistical literature rather in the philosophy of science literature where it falls under discussions of Confirmation Theory

- Popper, K. (1968) The Logic of Scientific Discovery. Harper Torchbooks Appendix ix where, with x and y denoting events

"If we are asked to give a criterion of the fact that the evidence y supports or corroborates a statement x, the most obvious reply is: that y increases the probability of x."

- Achinstein, P. (2001) The Book of Evidence. Oxford University Press. "for a fact e to be evidence that a hypothesis h is true, it is both necessary and sufficient for e to increase h's probability over its prior probability" Example Hempel's (the Raven) Paradox.

- $\Omega =$ the universe of all objects

- A = 'if an object is a crow, then it is black' or equivalently 'all crows are black'

- a black crow is observed so C = 'a black crow is observed'

- naturally $RB(A \,|\, C) > 1$ and so this observation produces evidence in favor of A

- the contrapositive of A, namely, B = 'if an object is not black, then it is not a crow' or equivalently 'all nonblack objects are not crows'

- the paradox supposedly arises due to the fact that, observing an nonblack object that isn't a crow, such as a white handkerchief, wouldn't necessarily be viewed as evidence in favor of A even though it is in favor of B

- resolution (?) bring bias calculations into the discussion and then it is seen that this is just a bad study if our purpose is to confirm A by viewing an object at random (see text)

- but not really "statistical" in nature